Skip to content

Pathway Studio #
Find similar titles

Structured data

Category
Software

텍스트마이닝 기법을 이용한 유전자 네트워크 분석 #

텍스트마이닝 필요성 #

과학 문헌의 대표적인 데이터베이스인 NCBIPubMed는 시간이 지날수록 등록되는 문헌의 수가 급속도로 증가하고 있으며, 2012년 이후 2천만 건 이상의 문헌들을 서비스하고 있다. 즉, 증가의 추세로 볼 때 하루에 약 4,100여 건의 문헌이 업데이트되고 있다. 문헌이 기하급수적으로 증가함에 따라 관련 연구에 대한 정보를 찾기 위해서 연구자들은 점점 더 많은 시간과 노력을 기울여야 한다. 이에 따라 문헌 속에서 생물학적인 정보를 자동으로 추출하는 시스템의 필요성이 증가하고 있다.

Gene network discovery by text-mining #

최근의 생물학 연구의 이슈는 데이터를 생산하는 것보다 현재까지 공개 데이터베이스에 축적된 공개된 데이터 및 자신이 보유한 데이터를 이용하여 새로운 정보 및 생물학적 의미를 찾는 부분에 있다. 즉 데이터의 ‘생산’에서 ‘연결’로 생물정보학의 관점이 옮겨가고 있다고 할 수 있다. 따라서 다양한 분야의 실험데이터, 문헌데이터, 공개데이터 등을 네트워크 형식으로 연결하여 새로운 지식을 발굴할 수 있는 시스템이 주목받고 있다.

현재 NCBI의 PubMed에는 18,000,000건 이상의 논문들이 수록되어 있으며, 하루에도 수 십편의 논문들이 새롭게 업데이트되고 있다. PubMed에 수록되어 있는 저널들은 의학, 생명, 생물에 관련된 연구 논문들이며, 오랜 기간에 걸쳐 저널의 정보에 대한 공신력이 검증된 논문들이라고 할 수 있다. 따라서 연구자가 새로운 주제를 기반으로 하여 연구를 시작하고자 할 경우, 가장 선행되어져야 하는 것은 논문 리뷰라고 할 수 있다. 다른 사람이 비슷한 연구를 수행한 경험이 있는지, 어떠한 방법에 의해서 연구가 진행되었는지, 또한 그 결과는 어떠하였는지 등을 참조하게 된다. 이와 같은 논문 리뷰가 선행된 후 자신의 연구 방향을 설정하게 된다. 그만큼 다른 사람에 의해서 분석되어진 연구 정보가 최근 들어서는 상당히 중요하다고 할 수 있다. 더구나, 최근에는 인터넷을 이용한 데이터의 정보교환이 활발하여 엄청나게 많은 문헌 정보들을 손쉽게 찾아볼 수 있기 때문에 일정한 부분에서는 직접 실험을 하지 않더라도 그와 유사한 실험을 수행한 결과물을 얻을 수 있다. 따라서 이와 같은 문헌 정보의 모래 언덕을 잘 살펴서 보물을 찾아낼 수 있는 방법들이 주목을 받고 있다.

한 예로 Ariadne사의 MedScanPathway Studio는 텍스트 마이닝이라는 컴퓨터 알고리즘을 이용하여 주어진 문헌 정보에서 유전자와 질병, 화학물질, 세포내 프로세스, 대사회로와 같은 엔티티(Entity)들의 관계를 자동으로 추출하여 테이블과 다양한 그래프로 관계들을 보여주는 프로그램으로 대사회로, 유전자 조절 네트워크, 단백질 상호작용 맵과 같은 실험결과를 이해하는데 상당히 유용하다(그림 1). Pathway Studio는 척추동물, 식물 연구의 생물학적 연관관계, ontology와 pathway들의 정보를 포함하고 있는 ResNet 데이터베이스와 자연언어처리기술을 이용하여 과학문헌을 자동으로 읽고 생물학적인 관계를 추출하는 기능을 가진 MedScan으로 구성되어 있다. MedScan의 경우에는 약 1천개의 논문 초록을 대상으로 생물학적인 관계를 추출하는데 2~3분밖에 걸리지 않으므로, 대량의 수집된 논문에서 특정한 바이오마커를 발굴하거나 특정 단백질 또는 질병과 관련된 네트워크 정보를 검토하기에는 상당히 유용하다고 할 수 있다.

보통 하나의 유전자와 관계하는 다양한 정보를 찾아보기 위해서는 수많은 데이터베이스와 문헌, 웹사이트를 검색하여 그 연관관계를 하나씩 도출해야 되지만, Pathway Studio와 같은 프로그램은 그와 같은 일련의 시간과 노동력이 상당히 투자되어야 하는 업무를 효율적으로 지원함으로써 연구자의 보다 빠르고 충실한 결과물을 얻을 수 있도록 지원한다.

그림1

그림 1. Architecture of MedScan and Pathway Studio

그림 2은 Cholestasis에 관련된 약물과 단백질 등의 연관관계를 Pathway Studio를 이용하여 연구자가 쉽게 이해할 수 있는 방식의 그래프로 재구성한 것이다. 이와 같은 방법으로 복잡한 질병과 약물, 단백질 및 대사 작용의 네트워크를 시각적으로 이해하기 쉽게 제공하고 있다.

그림2

그림 2. Pathway Studio workflow diagram

그림 3는 EMB라는 유전자를 대상으로 관련 있는 다양한 유전자 및 질병, 약물, 세포내 프로세스 등을 연결한 그래프로서 연결되어있는 라인을 클릭하면 그림과 같이 연관관계를 표현하는 문헌정보를 확인할 수 있어 연관관계의 정확성 및 신뢰성을 뒷받침하고 있다.

그림3

그림 3. Entity와 Relation의 네트워크 및 관련 문헌의 확인

그림 4는 PubMed에서 Curcumin과 Prostate Cancer에 관련된 논문을 검색하여 수집된 수 십 여 편의 논문에서 MedScan의 텍스트 마이닝 알고리즘을 이용하여 네트워크를 재구성한 것이다. 그림에서 보는 것과 같이 Curcumin과 Prostate Cancer 사이에 있는 단백질이 Prostate Cancer를 억제하는 역할을 한다는 정보를 검증된 문헌을 통해서 확인하는 것이다.

그림4

그림 4. MedScan을 통한 문헌정보의 네트워크 구성


출처 : http://insilicogen.com/blog/67

PathwayStudio #

PathwayStudio의 특징 #

데이터를 추출할 때 사용되는 텍스트 마이닝 기법은 복합 문서와 인터넷 페이지 등과 같은 비정형 데이터로부터 자연언어처리 기술과 문서 처리 기술을 적용하여 유용한 정보를 추출하고 가공하는 기술을 말한다. 다양한 형태의 생물학 문헌정보를 이용한 TextMining 기법과 알고리즘이 개발되고 있지만, 그 결과의 신뢰성이 크게 높지 않은 상황이다. PathwayStudio라는 솔루션은 생물학 문헌 정보에서 TextMining 기법을 통해 유전자와 질병, 약물, 처리 작용 등에 대해서 상호 연관관계를 추출하여 DB화하였으며, 그 결과를 그래픽 형태와 테이블 형태로 잘 제공해 주고 있다.

PathwayStudio의 텍스트 마이닝 기법을 이용한 특징들을 다음과 같다.

1. 생물학적인 문헌에서 정확하게 데이터를 추출할 수 있도록 과학적 언어에 Focusing
2. 생물학 전문가에 의한 정보의 수정 및 Dictionary라고 정의된 Mammalian, Plant에 특화된 텍스트 마이닝
3. 2분안에 918개의 abstract 다운로드, 7,700개 문장 리뷰, 7,300개 entity와 577개의 relation 관계 확인을 동시에 할 수 있을 정도의 빠른 속도
4. 동일한 주제의 연구 정보에 대한 중복성 제거
5. 생물학 전문가의 수정 및 지속적인 검증을 통한 10% 이하의 낮은 False positive 데이터
6. Dictionary 및 검색 패턴을 연구자 의도에 따른 customization 가능

또한, 사용하는 방법은 사용자가 친숙하게 사용할 수 있도록 GUI 인터페이스가 구성되어 있다. MedScan에서 문헌을 검색하기에 앞서 먼저 Catridge를 선택한다. Human, Mouse, Rat과 같은 mammal에 대해 검색을 할 때에는 Standard catridge를 선택하고, Plant와 관련된 검색을 할 때에는 Plant catridge를 선택한다. 간단하게 설정을 마치고 나면 검색을 수행할 수 있다.

문헌검색 #

검색은 Popular Destinations과 Quick Import 두 가지 검색 방법을 이용한다. Popular Destinations에서는 Search PubMed, Search BioMed Central, Search HighWire Press, Search Google Scholar, Search Google 다섯 가지의 검색 할 수 있는 destination(그림 4)이 제공된다. 각각을 클릭하면 MedScan에서 바로 웹 사이트로 연결되어 인터넷 창을 따로 띄우지 않고도 검색을 수행할 수 있게 되어 있다. Quick Import 검색은 웹사이트로 직접 연결하여 데이터를 검색하는 것보다 조금 더 빠르고 편리한 방법이다. 웹사이트에 연결하지 않고 바로 쿼리를 입력할 수 있게 되어 있어서 Import PubMed Dataset에 쿼리를 입력하고 Query and Import 버튼을 클릭하면 기본적으로 PubMed abstract에서 1,000개까지의 abstract을 추출해 준다.

Popular Destination 검색 가운데 “Search PubMed”를 선택하면, NCBI의 PubMed와 동일한 화면을 볼 수 있다. NCBI의 PubMed에서 문헌을 검색할 때와 동일한 방법으로 알고자하는 쿼리를 입력하고 검색을 수행한다. PubMed에서 문헌을 검색할 때 Display Setting을 Abstract로 변환하고, 페이지당 보여지는 문헌의 개수를 200개로 변환하면 더욱더 많은 정보를 추출할 수 있다는 것을 염두해두자. 검색된 Abstract에서 검색하고자 했던 쿼리와 관련이 있는 정보들이 있는 문장은 노란색 배경처리되어 표시되고 생물학적인 의미를 지니고 있는 단어는 초록색으로 표시된다. 표시된 부분은 자동으로 Entity와 Relation으로 추출되어 우측 상단의 테이블 형태로 정리된다.

검색결과 #

검색 결과가 정리된 우측의 테이블은 Relation tab과 Entities tab으로 결과가 정리되어 있다. Relation tab을 보면 첫 번째 컬럼은 Reference 문헌의 개수를 의미하고 두 번째 컬럼은 Entity 1, 세 번째 컬럼은 Relation 관계 정보를 마지막 네 번째 컬럼은 Entity 2를 나타낸다. 상단 도구모음의 View를 클릭하면 데이터를 컬럼별로 정렬하여 볼 수 있게 되어 있다. 각각의 컬럼을 정렬해가면서 원하는 데이터만 키보드의 Shift 또는 Ctrl을 사용하여 선택한다. 그런 다음 선택된 데이터만 아래의 Known Relation 테이블로 이동시킨다. Known Relation 테이블에서도 다시 한 번 view를 통해 정렬하여 컬럼을 선택할 수 있다.

그렇게 해서 최종적으로 선택된 데이터들만 가지고 Pathway Studio로 이동시킨다. 선택된 데이터에서 마우스 오른쪽을 누른 뒤 send to pathway studio 클릭한다. Pathway Studio를 다시 실행시켜 보면 MedScan에서 보낸 데이터를 Import 할 수 있는 창이 떠있고 여기에서 pathway를 저장할 디렉토리를 선택해주고 Next를 클릭한다. Import가 완료되고 해당 디렉토리로 가면 MedScan에 서 보낸 데이터 정보를 이용하여 그려진 pathway 파일이 생성된 것을 확인할 수 있다.

이 밖에도 MedScan에서는 직접 사용자가 가지고 있는 텍스트, 워드, pdf, XML 또는 HTML 포맷의 문서를 Import 하여 데이터를 추출할 수도 있다. Import 할 문서가 한 개 이상일 때에는 문서를 하나의 폴더 안에 저장해 놓고 폴더 자체를 Import 할 수도 있다. 우리가 어떤 연구를 하기 전에는 보통 문헌에서 내가 하고자 하는 연구가 어느 정도 선행 연구가 이루어졌는지 알아보는데 그때마다 많은 문헌을 하나하나 살펴보기에는 어려움이 있다. 그때 MedScan을 사용하면 그런 점에서 많은 도움을 줄 뿐만 아니라 그 문헌들 사이에서 의미 있는 결과까지 도출해 줄 수 있으리라 생각된다.

Incoming Links #

Related Bioinformaticses #

Suggested Pages #

0.0.1_20140628_0